BULETIN CUACA

KETAPANG & KAYONG UTARA

EDISI SEPTEMBER 2025

@ www.bmkg.go.id

stamet.ketapang@bmkg.go.id

Q 0811 5787 121

ANALISIS CUACA BULAN AGUSTUS 2025

PROSPEK CUACA BULAN OKTOBER, NOVEMBER, DAN DESEMBER 2025

KONDISI CUACA EKSTREM

PREDIKSI MUSIM HUJAN TAHUN 2025/2026

STASIUN METEOROLOGI RAHADI OESMAN KETAPANG

TIM PENYUSUN

Sudah enam tahun lamanya kami, Stasiun Meteorologi Kelas III Rahadi Oesman Ketapang, berkomitmen mengeluarkan informasi cuaca dan iklim dalam bentuk buletin cuaca. Buletin cuaca ini memberikan informasi terkini tentang cuaca dan iklim, edukasi cuaca, kegiatan, dan masih banyak lagi informasi lainnya. Kami akan berusaha untuk terus memberikan informasi cuaca dan iklim kepada masyarakat, khususnya di wilayah Kabupaten Ketapang dan Kabupaten Kayong Utara agar masyarakat dapat mengenal, memahami, dan mengantisipasi dampak dari cuaca dan iklim sehingga dapat meminimalisir hal-hal yang tidak diinginkan.

Senantiasa kami ucapkan terima kasih kepada pihakpihak yang selama ini selalu membantu kami dalam memberikan masukan, kritik, ataupun saran kepada kami, sehingga kami dapat terus mengevaluasi dan memperbaiki kualitas informasi untuk menjadi yang lebih baik lagi.

Stasiun Meteorologi Kelas III Rahadi Oesman Ketapang

TONI KURNIAWAN, S.P Kepala Stasiun Meteorologi Kelas III Rahadi Oesman Ketapang

Toni Kurniawan, S.P Pembina

Catur Winarti, S.P Pembina

Ashifa Putri, S.Tr Pemimpin Redaksi

Wenny Juliyanti, S.Tr Penulis

Sudirman, S.Tr Penulis

Rifka Annisa, S.Tr Penulis

Rezky Fajar Maulana, S.Tr Penulis

Aji Rahmanto, S.Kom Editor

Safarina Salma Putri, S.Tr Desainer dan Editor

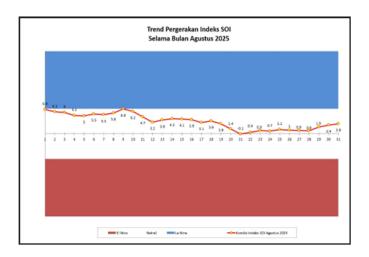
Mahakim Lubis, S.Tr.Inst

Soeb Produksi dan Distribusi

Dini Produksi

KONTEN

4. WASPADA CUACA


Ringkasan prakiraan curah hujan dan himbauan terkait potensi banjir selama tiga bulan kedepan

5. RANGKUMAN CUACA

Rangkuman kondisi cuaca bulan lalu yang mencakup semua aspek cuaca seperti suhu, hujan, dll.

6. PENGENALAN ISTILAH

Penjelasan tentang semua istilah di dunia meteorologi

8. ANALISIS SKALA GLOBAL

Analisis kondisi dinamika atmosfer secara global

11. ANALISIS SKALA REGIONAL

Analisis kondisi dinamika atmosfer skala regional

14. ANALISIS LOKAL

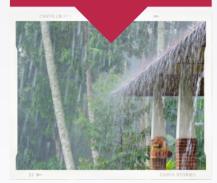
Analisis kondisi dinamika atmosfer skala lokal yaitu di Stasiun Meteorologi Rahadi Oesman Ketapang

19. KEJADIAN CUACA EKSTREM

Kejadian cuaca yang melebihi ambang batas ekstrim yang ditentukan sesuai dengan aturan BMKG

20. PROSPEK CUACA TIGA BULAN KEDEPAN

Prakiraan cuaca selama tiga bulan kedepan


32. ARTIKEL BMKG

Prediksi Musim Hujan Tahun 2025/2026

WASPADA CUACA

OKTOBER

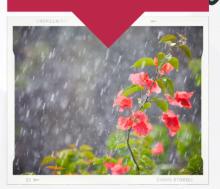
CURAH HUJAN 201 - 500 MM KATEGORI MENENGAH - SANGAT TINGGI

POTENSI BANJIR

KETAPANG:

Delta Pawan, Kendawangan, dan Matan Hilir Selatan.

NOVEMBER


CURAH HUJAN 301 - >500 MM KATEGORI TINGGI - SANGAT TINGGI

POTENSI BANJIR

KETAPANG:

Kendawangan.

DESEMBER

CURAH HUJAN 201 - >500 MM KATEGORI MENENGAH - SANGAT TINGGI

POTENSI BANJIR

RENDAH

MENENGAH

INGGI

KAYONG UTARA :

Pulau Maya dan Sukadana

KETAPANG:

Delta Pawan, Hulu Sungai, Jelai Hulu, Kendawangan, Manis Mata, Matan Hilir Selatan, Muara Pawan, Nanga Tayap, Pemahan, Sandai, Simpang Dua, Simpang Hulu, Sungai Laur, Sungai Melayu Rayak, dan Tumbang Titi.

KAYONG UTARA:

Pulau Maya dan Sukadana.

KETAPANG:

Delta Pawan, Hulu Sungai, Jelai Hulu, Kendawangan, Manis Mata, Matan Hilir Selatan, Muara Pawan, Nanga Tayap, Pemahan, Sandai, Simpang Dua, Simpang Hulu, Sungai Laur, Sungai Melayu Rayak, dan Tumbang Titi.

KAYONG UTARA:

Sukadana

KETAPANG:

Delta Pawan, Matan Hilir Selatan, Muara Pawan, Simpang Hulu, dan Sungai Melayu Rayak.

KAYONG UTARA:

Pulau Maya dan Sukadana

KETAPANG:

Delta Pawan, Hulu Sungai, Jelai Hulu, Kendawangan, Manis Mata, Matan Hilir Selatan, Muara Pawan, Nanga Tayap, Pemahan, Sandai, Simpang Dua, Simpang Hulu, Sungai Laur, Sungai Melayu Rayak, dan Tumbang Titi.


KETAPANG:

Delta Pawan, Matan Hilir Selatan, Muara Pawan, dan Sungai Melayu Rayak.

RANGKUMAN CUACA

BULAN AGUSTUS 2025

HUJAN

257 mm

Jumlah curah hujan

16 hari

Jumlah hari hujan

PENYINARAN

289 Jam

Lama penyinaran matahari

ANGIN

44 km/jam

kecepatan angin terbesar

Tenggara

Arah angin terbanyak

TITIK PANAS

1657 Titik

Jumlah titik panas yang terdeteksi

Stasiun Meteorologi Rahadi Oesman Ketapang

JARAK PANDANG

1000 m

Jarak pandang terendah

SUHU

35,2°C

Suhu udara tertinggi

27,7°C

Suhu udara rata-rata

23,1 °C

Suhu udara terendah

KELEMBAPAN

96 %

Kelembapan tertinggi

80 %

kelembapan rata-rata

48 %

kelembapan terendah

PENGENALAN ISTILAH

1. CUACA

Kondisi atmosfer yang terjadi suatu saat di suatu tempat dalam waktu yang relatif singkat.

2. IKLIM

Keadaan rata-rata cuaca dalam jangka waktu yang relatif lama dan cakupan wilayah yang relatif lebih luas.

3. SIFAT HUJAN

Perbandingan jumlah curah hujan yang terjadi dengan nilai rata-rata selama satu bulan di suatu tempat.

Sifat hujan dibagi menjadi tiga kriteria, yaitu:

A. ATAS NORMAL (AN)

Nilai perbandingan jumlah curah hujan selama satu bulan terhadap rata ratanya >115%.

B. NORMAL (N)

Nilai perbandingan jumlah curah hujan selama satu bulan terhadap rata ratanya antara 85– 115%.

C. BAWAH NORMAL (BN)

Nilai perbandingan jumlah curah hujan selama 1 bulan terhadap rata ratanya <85%.

4. DIPOLE MODE

Fenomena interaksi laut-atmosfer di Samudera Hindia yang dihitung berdasarkan selisih antara anomali suhu muka laut perairan Pantai Timur Afrika dengan perairan di sebelah Barat Sumatera.

5. *EL NINO*

Kondisi terjadinya peningkatan suhu muka laut di ekuator Pasifik Tengah dan Pasifik Timur dari nilai rata-ratanya. *El Nino* ditandai dengan adanya anomali suhu muka laut di ekuator Pasifik Tengah (Nino 3.4) bernilai positif (lebih panas dari rata-ratanya).

6. LA NINA

Kebalikan dari *El Nino*, ditandai dengan anomali suhu muka laut negatif (lebih dingin dari rataratanya) di ekuator Pasifik Tengah (Nino 3.4).

7. ENSO

(EL NINO SOUTHERN OSCILLATION)

Gejala penyimpangan (anomali) pada suhu permukaan Samudera Pasifik di Pantai Barat Ekuador dan Peru yang lebih tinggi dari rata-rata normalnya.

8. HOTSPOT

Daerah yang memiliki suhu permukaan relatif lebih tinggi dibandingkan daerah di sekitarnya berdasarkan ambang batas suhu tertentu yang terpantau oleh satelit penginderaan jauh.

9. KELEMBAPAN UDARA

Keadaan lembap udara berhubungan dengan adanya uap air di dalamnya.

10. CURAH HUJAN

Ketinggian air hujan yang terkumpul dalam penakar hujan pada tempat yang datar, tidak menyerap, tidak meresap, dan tidak mengalir.

Unsur hujan satu milimeter artinya dalam luasan satu meter persegi pada tempat yang datar tertampung air hujan setinggi satu milimeter atau tertampung air hujan sebanyak satu milimeter.

11. DASARIAN

Rentang waktu selama sepuluh hari. Dalam satu bulan dibagi menjadi tiga dasarian, yaitu :

A. DASARIAN I

Tanggal 1 sampai dengan 10

B. DASARIAN II

Tanggal 11 sampai dengan 21

C. DASARIAN III

Tanggal 21 Sampai dengan akhir bulan

12. AWAL MUSIM HUJAN

Ditetapkan berdasarkan jumlah curah hujan dalam satu dasarian sama dengan atau lebih dari 50 milimeter dan diikuti oleh dua dasarian berikutnya.

13. AWAL MUSIM KEMARAU

Ditetapkan berdasarkan jumlah curah hujan dalam satu dasarian kurang dari 50 milimeter dan diikuti oleh dua dasarian berikutnya.

14. MJO

(MADDEN JULIAN OSCILLATION)

Aktivitas intra seasonal yang terjadi di wilayah tropis yang dapat dikenali berupa adanya pergerakan aktivitas konveksi yang bergerak ke arah Timur dari Samudera Hindia ke Samudera Pasifik yang biasanya muncul setiap 30 sampai 40 hari.

15. IOD

(INDIAN OCEAN DIPOLE)

Perbedaan suhu permukaan laut antara dua wilayah, yaitu Samudera Hindia bagian Barat dan Samudera Hindia bagian Timur di Selatan Indonesia

16. STREAMLINE

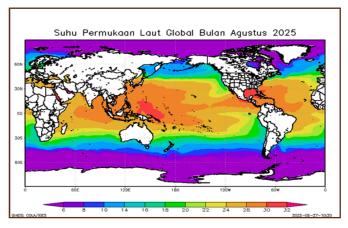
Garis-garis yang menggambarkan angin dengan arah yang sama.

17. ZONA MUSIM (ZOM)

Zona Musim (ZOM) adalah daerah yang pola hujan rata-ratanya memiliki perbedaan yang jelas antara periode musim kemarau dan musim hujan. Daerah-daerah yang pola hujan rata-ratanya tidak memiliki perbedaan yang jelas antara periode musim kemarau dan musim hujan, disebut Non ZOM.

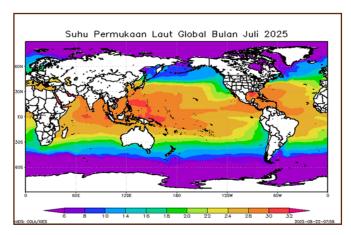
Luas suatu wilayah ZOM tidak selalu sama dengan luas suatu wilayah administrasi pemerintahan. Dengan demikian, satu wilayah ZOM bisa terdiri dari beberapa kabupaten, dan sebaliknya satu wilayah kabupaten bisa terdiri dari beberapa ZOM.

18. OLR (*OUTGOING LONGWAVE RADIATION*)


OLR adalah energi yang dipancarkan oleh bumi dalam bentuk gelombang panjang. Indeks OLR dapat menunjukkan seberapa besar gelombang panjang tersebut dipancarkan.

Awan merupakan salah satu faktor yang menghambat pancaran radiasi gelombang panjang dari bumi. Jika suatu daerah tertutup awan konvektif, maka nilai OLR akan kecil.

ANALISIS SKALA GLOBAL BULAN AGUSTUS 2025


Analisis Skala Global bertujuan untuk mengetahui kondisi parameter suhu permukaan laut skala global dan fenomena cuaca global selama bulan Agustus 2025. Adapun parameter atau fenomena cuaca global yang dimaksud tersebut antara lain :

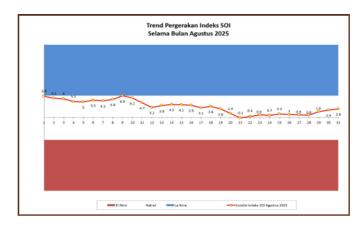
ANALISIS SUHU PERMUKAAN LAUT GLOBAL

Suhu permukaan laut pada bulan Agustus 2025 di sepanjang wilayah perairan Samudera Hindia, Benua Maritim Indonesia hingga Samudera Pasifik secara umum berada pada rentang 22 – 32 °C. Suhu permukaan laut wilayah Indonesia berada pada rentang 24 – 32 °C.

Rentang suhu tersebut dapat dikategorikan pada kondisi yang mendukung pertumbuhan awan konvektif, yang diakibatkan oleh tingginya potensi penguapan yang terjadi.

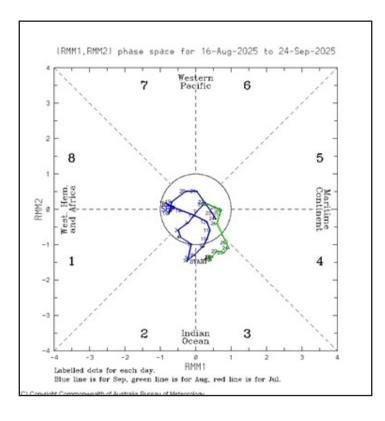
Berdasarkan gambar di atas dapat diketahui bahwa kondisi rata-rata suhu permukaan laut global pada bulan Juli secara umum memiliki kondisi yang tidak jauh berbeda dengan suhu bulan-bulan sebelumnya yaitu berkisar di antara 22 – 32 °C untuk wilayah perairan Samudera Hindia, Benua Maritim Indonesia dan Samudera Pasifik.

Jadi, dapat disimpulkan bahwa kondisi suhu permukaan laut global di bulan Juli hingga Agustus 2025 masih berada di kategori hangat yang berpotensi mendukung terbentuknya awan-awan konvektif yang dapat menyebabkan hujan.


ANALISIS SOI

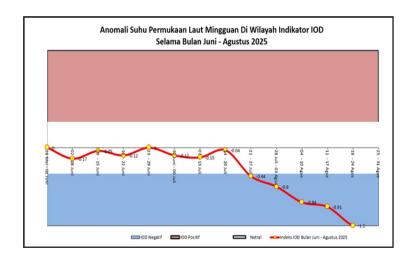
(Southearn Osscilation Index)

A tmosfer bumi dalam skala global sangatlah kompleks sehingga munculnya suatu fenomena atau gangguan atmosfer dalam suatu wilayah dapat mempengaruhi wilayah lainnya. Indonesia yang terletak di wilayah tropis tidak terlepas dari pengaruh fenomena global seperti fenomena ENSO (El Nino Southearn Oscillation).


Indikator kejadian ENSO adalah terjadinya perbedaan tekanan di wilayah belahan bumi Selatan yaitu antara Tahiti dan Darwin. Adanya perbedaan tekanan di kedua wilayah tersebut dapat dijadikan sebagai indikator kejadian penyimpangan (anomali) suhu permukaan laut di wilayah Samudera Pasifik bagian Tengah yang dikenal dengan Fenomena *El Nino* dan *La Nina*. Identifikasi perbedaan tekanan antara wilayah Tahiti dan Darwin dapat dilakukan dengan menganalisa pergerakan Indeks Osilasi Selatan (*Southearn Oscillation Index*/SOI).

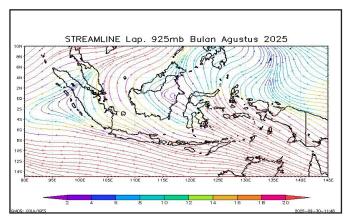
Trend pergerakan indeks SOI harian selama bulan Agustus 2025 seperti yang terlihat pada gambar di atas menunjukkan bahwa secara umum trend pergerakan indeks SOI dominan bergerak pada kategori

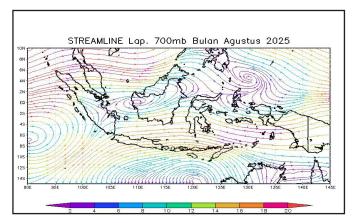
Netral. Hal ini mengindikasikan bahwa indeks SOI tidak memiliki dampak yang cukup signifikan terhadap potensi peningkatan curah hujan khususnya di wilayah Kabupaten Ketapang selama bulan Agustus 2025.


ANALISIS PERGERAKAN MJO (Madden Julian Oscillation)

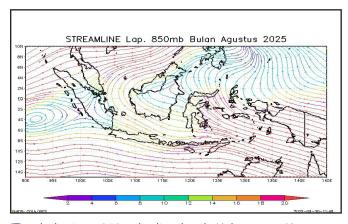
Berdasarkan gambar diagram fase MJO realtime dapat diketahui bahwa kondisi MJO pada akhir bulan Agustus 2025 bergerak di dalam lingkaran kuadran 4 dan 5 yang ditunjukkan oleh garis berwarna hijau. Hal ini mengindikasikan bahwa pada periode ini, MJO bergerak di wilayah perairan Indonesia namun tidak memiliki pengaruh yang signifikan terhadap peningkatan curah hujan di Indonesia.

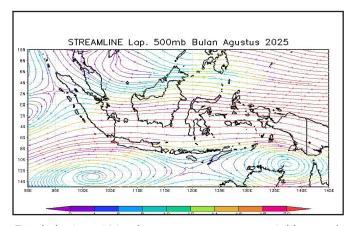
ANALISIS NILAI DIPOLE MODE


memperhatikan engan di atas menunjukkan bahwa kondisi indeks IOD pada tiga bulan terakhir, yaitu bulan Mei hingga Juli 2025 mengalami fluktuasi nilai indeks dari kondisi Netral pada awal bulan Mei dan cenderung konstan hingga pertengahan bulan Juli, kemudian cenderung ke kondisi IOD Negatif pada akhir bulan Juli. Terjadinya kondisi gangguan meteorologi baik berupa peningkatan maupun penurunan kondisi curah hujan di wilayah Indonesia terlebih khusus Indonesia bagian Barat termasuk Kabupaten Ketapang selama bulan Juli 2025 cukup dipengaruhi oleh fenomena Dipole Mode, khususnya pada akhir bulan tersebut.


ANALISIS SKALA REGIONAL BULAN AGUSTUS 2025

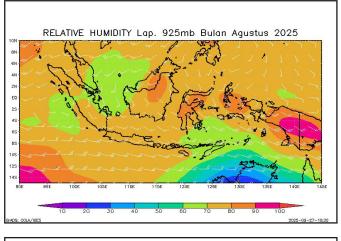
Analisis cuaca dalam skala regional perlu untuk dilakukan untuk mengetahui pengaruh kondisi parameter cuaca dalam skala regional terhadap kondisi cuaca di wilayah Indonesia salah satunya wilayah Provinsi Kalimantan Barat.

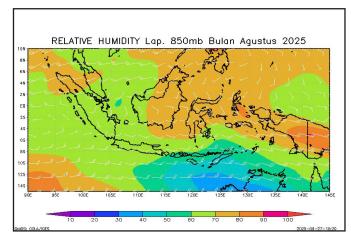

ANALISIS STREAMLINE

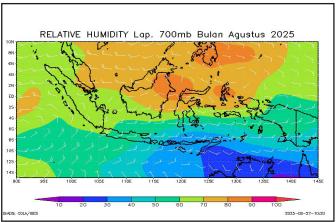

Pada lapisan 925 mb, kondisi angin di wilayah Kabupaten Ketapang menunjukkan kondisi angin dominan bergerak dari arah Tenggara dengan kecepatan angin rata-rata 8 – 16 km/jam. Pada lapisan ini tidak terdapat pola angin yang signifikan di sekitar wilayah Kabupaten Ketapang.

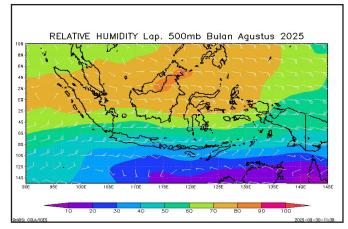
Pada lapisan 700 mb menunjukkan angin dominan bergerak dari arah Barat dengan kecepatan 2 – 12 km/jam. Pada lapisan ini terdapat pola belokan angin di wilayah Kabupaten Ketapang akibat adanya pola siklonik di sebelah utara Kabupaten Ketapang.

Pada lapisan 850 mb di wilayah Kabupaten Ketapang menunjukkan kondisi angin dominan bergerak dari arah Tenggara dengan kecepatan angin rata-rata 8 – 16 km/jam. Pada lapisan ini tidak terdapat pola angin yang signifikan di sekitar wilayah Kabupaten Ketapang.

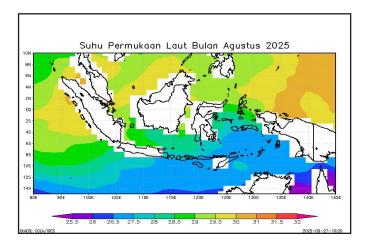


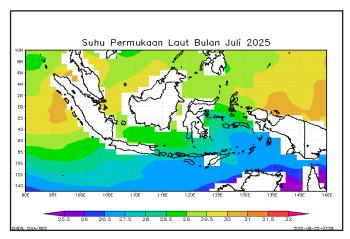

Pada lapisan 500 mb secara umum menunjukkan arah angin bergerak dari arah Timur dengan kecepatan angin rata-rata antara 14 – 20 km/jam. Pada lapisan ini tidak terdapat pola angin yang signifikan di sekitar wilayah Kabupaten Ketapang.


KESIMPULAN: Kondisi angin pada bulan Agustus didominasi oleh angin dari arah Timur hingga Barat di lapisan atmosfer bagian bawah hingga atas. Terdapat pola belokan angin pada pada lapisan 700 mb.


ANALISIS KELEMBAPAN UDARA

Kelembapan udara setiap lapisan ketinggian berpengaruh terhadap kondisi cuaca di permukaan bumi.

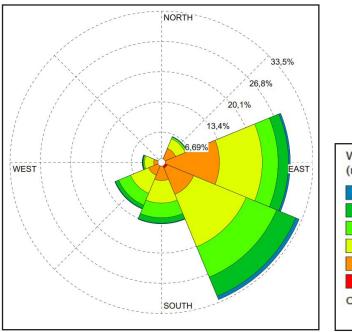



ondisi kelembapan udara di wilayah Kalimantan Barat selama bulan Agustus di lapisan 925 – 500 mb berada pada nilai 60 - 80% yang dikategorikan cukup basah. Berdasarkan nilai kelembapan ini, dapat diketahui bahwa jenis-jenis awan yang dominan berpotensi terbentuk di wilayah Kalimantan Barat adalah jenis awan rendah hingga tinggi.

ANALISIS SUHU PERMUKAAN LAUT INDONESIA

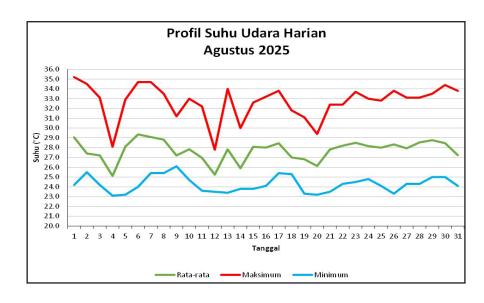
Suhu permukaan laut wilayah Indonesia berperan penting dalam mengatur distribusi uap air di wilayah atmosfer Indonesia. Hal ini tidak terlepas dari kondisi wilayah Indonesia yang merupakan wilayah kepulauan yang dikelilingi oleh lautan sehingga lautan berperan cukup penting dalam kontribusi mengendalikan kondisi cuaca di wilayah Indonesia. Selain itu, wilayah Indonesia yang berada pada garis Ekuator menyebabkan intensitas radiasi matahari yang diterima di wilayah ini cukup tinggi sehingga menyebabkan energi panas yang membantu proses penguapan di lautan.

Suhu permukaan laut di wilayah perairan Kalimantan Barat pada bulan Juli berada pada rentang 28.5 – 30°C, sedangkan pada bulan Agustus berada pada rentang 28.5 – 29.5°C. Dengan demikian terdapat penurunan suhu maksimum muka laut di perairan Kalimantan Barat pada bulan Agustus.

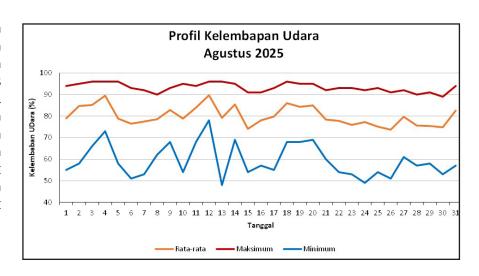

KESIMPULAN: Kondisi suhu permukaan laut perairan Indonesia termasuk perairan Kalimantan Barat di bulan Agustus berada di kategori cukup hangat, hal ini mengindikasikan bahwa suhu permukaan laut perairan di Kalimantan Barat berpengaruh terhadap proses pembentukan awan dan suplai uap air di wilayah atmosfer Indonesia, termasuk wilayah Kabupaten Ketapang, Kalimantan Barat.

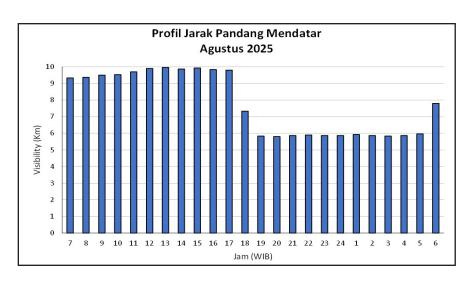
ANALISIS SKALA LOKAL BULAN AGUSTUS 2025

Analisis cuaca skala lokal diperlukan untuk mengetahui kondisi cuaca dominan yang terjadi pada suatu wilayah seperti Kabupaten Ketapang.


ANGIN

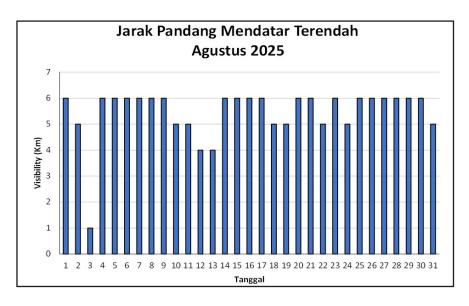
Pengolahan data angin di wilayah Kabupaten Ketapang bulan Agustus 2025 menunjukkan bahwa dominasi kondisi angin berasal dari arah Tenggara dengan presentase sebesar 32.8 % dan kecepatan 7 – 13 km/jam. Kecepatan angin dominan *calm* dengan presentase 3 %, sedangkan kecepatan angin maksimum yang tercatat pada bulan Agustus 2025 sebesar 24 knots atau 44 km/jam terjadi pada tanggal 18 Agustus 2025.


SUHU UDARA

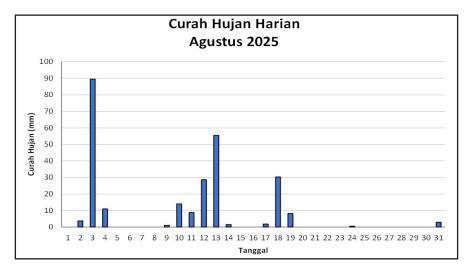

ata-rata suhu udara harian yang Ntercatat pada bulan Agustus 2025 di Stasiun Meteorologi Rahadi Oesman Ketapang berkisar antara 25.1 – 29.4 °C. Suhu udara tertinggi harian yang terjadi antara pukul 10.00 - 15.00 WIB berkisar antara 27.8 - 35.2 °C, sedangkan suhu udara terendah harian terjadi antara pukul 03.00 -07.00 WIB yang berkisar antara 23.1 – 26.1 °C. Suhu udara maksimum tertinggi pada bulan Agustus 2025 terjadi pada tanggal 1 Agustus 2025, sedangkan suhu udara minimum terendah terjadi pada tanggal 4 Agustus 2025.

KELEMBAPAN UDARA

elembapan udara rata-rata harian yang tercatat di Stasiun Meteorologi Rahadi Oesman Ketapang pada bulan Agustus 2025 berkisar antara 74 – 90 %. Kelembapan udara maksimum harian bulan Agustus 2025 berkisar antara 89 – 96 %, sedangkan kelembapan udara minimum harian yang tercatat berkisar antara 48 – 77 % dengan kelembapan udara terendah tercatat pada tanggal 13 Agustus 2025.

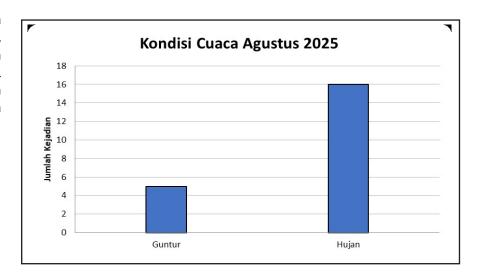


JARAK PANDANG MENDATAR



Jarak pandang mendatar pada bulan Agustus 2025 pada pukul 06.00 – 18.00 WIB yang tercatat di Stasiun Meteorologi Rahadi Oesman Ketapang secara umum di atas 6 km dan pada pukul 19.00 – 05.00 WIB secara umum 6 km.

Jarak pandang terendah pada bulan Agustus 2025 tercatat 1000 meter pada tanggal 3 Agustus 2025 akibat terjadinya hujan dengan intensitas lebat.


CURAH HUJAN

Jumlah curah hujan harian pada bulan Agustus 2025 sebanyak 257 mm, dengan 16 hari hujan. Curah hujan tertinggi tercatat pada tanggal 3 Agustus 2025 dengan jumlah 90 mm. Potensi terjadinya hujan dengan intensitas ringan hingga lebat yang dapat disertai petir/guntur dan angin kencang dengan durasi singkat masih berlaku untuk wilayah Kabupaten Ketapang.

KEJADIAN CUACA

Kondisi cuaca yang terjadi pada bulan Agustus 2025 yaitu, cerah, berawan, guntur dan hujan dengan intensitas ringan hingga lebat. Tercatat 16 hari kejadian hujan dengan intensitas ringan hingga lebat dan 5 hari kejadian guntur.

KALENDER CUACA

Kalender Cuaca Agustus 2025

JUMAT	SABTU	MINGGU	SENIN	SELASA	RABU	KAMIS
1 Cuaca Suhu (°C) 35.2 24.2	2 Cuaca (%) Suhu (°C) Hujan RH (%) 94 34.5 55 25.5 58	33.1 Hujan 96	4 Cuaca Suhu (*C) Hujan RH (%) 28.1 23.1 73	32.9 96	34.7 93	7 Cuaca Suhu (°C) RH (%) 34.7 92 25.4 53
8 Cuaca Suhu (°C) RH 33.5 25.4	9 Cuaca (%) Suhu (°C) Hujan RH (%) 90 31.2 62 26.1 93 68	Suhu (°C) Hujan RH (%) 33 Guntur 95	11 Cuaca Suhu (°C) Guntur RH (%) 32.2 Hujan 94 23.6 68	27.8 96	Suhu (°C) Guntur RH (%) 34 Hujan 96	
15 Cuaca Suhu (°C) RH 32.6 23.8	16 Cuaca		18 Cuaca Suhu (°C) RH (%) 31.8 96 25.3 68	31.1 95	Suhu (°C) RH (%) 29.4 95	21 Cuaca Suhu (°C) RH (%) 32.4 92 23.5 60
22 Cuaca	23 Cuaca	Suhu (°C) Hujan RH (%) 33 92	25 Cuaca Suhu (°C) RH (%) 32.8 93 24.1 54	33.8 91	Suhu (°C) RH(%) 33.1 92	28 Cuaca Suhu (°C) RH (%) 33.1 90 24.3 57
29 Cuaca Suhu (°C) 33.5 25	30 Cuaca	31 Cuaca Suhu (°C) Guntur RH (%) 33.8 Hujan 94 24.1 57				

TITIK PANAS (Hotspot)

Titik panas merupakan salah satu indikator adanya suhu yang relatif tinggi di suatu wilayah terhadap lingkungannya berdasarkan ambang batas suhu tertentu yang terpantau oleh satelit penginderaan jauh.

TITIK PANAS PERKECAMATAN DI KABUPATEN KETAPANG						
No	Nama Kecamatan	Ti	Tingkat Kepercayaan			
INO	Nama Recamatan	Rendah	Sedang	Tinggi	Jumlah	
1	Air Upas	0	17	0	17	
2	Benua Kayong	2	12	0	14	
3	Delta Pawan	0	0	0	0	
4	Hulu Sungai	4	33	1	38	
5	Jelai Hulu	9	271	2	282	
6	Kendawangan	0	32	1	33	
7	Manis Mata	0	41	0	41	
8	Marau	2	97	5	104	
9	Matan Hilir Selatan	0	9	2	11	
10	Matan Hilir Utara	0	20	1	21	
11	Muara Pawan	0	4	0	4	
12	Nanga Tayap	6	118	2	126	
13	Pemahan	0	19	0	19	
14	Sandai	9	124	10	143	
15	Simpang Dua	6	103	2	111	
16	Simpang Hulu	12	356	18	386	
17	Singkup	0	6	0	6	
18	Sungai Laur	9	165	10	184	
19	Sungai Melayu Rayak	1	20	2	23	
20	Tumbang Titi	2	90	2	94	
	JUMLAH	62	1537	58	1657	

Titik panas yang terjadi pada bulan Agustus 2025 di wilayah Kabupaten Ketapang tercatat sebanyak 1657 titik panas dengan tingkat kepercayaan rendah hingga tinggi.

Jumlah titik panas tersebar di sembilan belas kecamatan Kabupaten Ketapang. Lokasi dengan titik panas terbanyak selama bulan Agustus 2025 berada di Kecamatan Simpang Hulu.

Titik panas terbanyak yang tercatat dalam satu hari terjadi pada tanggal 29 Agustus 2025 sebanyak 460 titik dengan tingkat kepercayaan rendah hingga tinggi.

TITIK PANAS PERKECAMATAN DI KABUPATEN KAYONG UTARA						
No	Nama Kecamatan	Ti	ngkat Kepercaya	an	I I a la	
INO	Nama Kecamatan	Rendah	Sedang	Tinggi	Jumlah	
1	Pulau Maya	0	2	0	2	
2	Pulau Karimata	2	13	0	15	
3	Seponti	0	0	0	0	
4	Simpang Hilir	0	11	0	11	
5	Sukadana	0	1	0	1	
6	Teluk Batang	0	1	0	1	
	JUMLAH	2	28	0	30	

Pada bulan Agustus 2025 tercatat tiga puluh titik panas yang tercatat di wilayah Kabupaten Kayong Utara.

Jumlah titik panas di Kabupaten Kayong Utara pada bulan Agustus 2025 tercatat pada lima kecamatan. Lokasi dengan titik panas terbanyak selama bulan Agustus 2025 berada di Kecamatan Pulau Karimata.

Titik panas terbanyak yang tercatat dalam satu hari terjadi pada tanggal 1 Agustus 2025 sebanyak 11 titik dengan tingkat kepercayaan rendah hingga sedang.

KEJADIAN CUACA EKSTREM

BULAN AGUSTUS 2025

HUJAN LEBAT-SANGAT LEBAT

Di atas 50 mm

DASI: 03 Agu 2025 (90 mm)

DAS II: 13 Agu 2025 (56 mm)

DAS III: NIHIL

ANGIN KENCANG

Di atas 46,2 km/jam

DASI: NIHIL

DASII: NIHIL

DAS III: NIHIL

SUHU EKSTREM

Di atas 35 °C

DAS I : 01 Agu 2025 (35,2 °C)

DASII: NIHIL

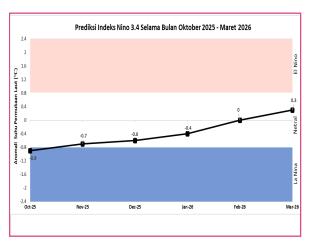
DAS III: NIHIL

JARAK PANDANG

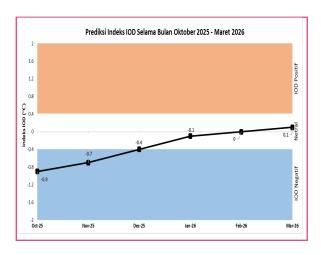
Di bawah 1 km

DASI: NIHIL

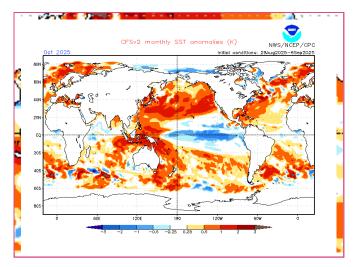
DASII: NIHIL


DAS III: NIHIL

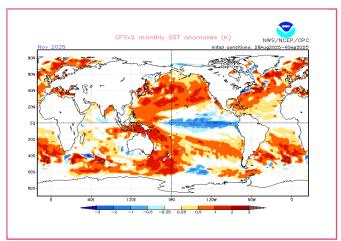
PROSPEK CUACA TIGA BULAN KEDEPAN

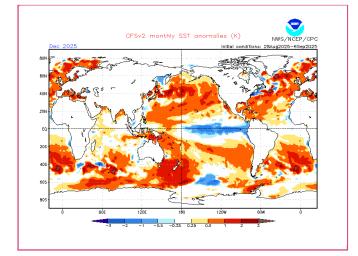

Prospek atau prakiraan cuaca tiga bulan ke depan merupakan gambaran hasil prakiraan kondisi cuaca bulanan selama periode enam bulan yakni bulan Oktober - Desember 2025. Gambaran prospek cuaca tersebut didasarkan pada prakiraan indikator-indikator pengendali cuaca seperti fenomena ENSO, *Dipole Mode* dan Suhu Permukaan Laut (SPL). Indikator-indikator pengendali cuaca seperti fenomena ENSO, *Dipole Mode*, dan Suhu Permukaan Laut (SPL)..

PRAKIRAAN ENSO


erdasarkan grafik grafik indeks ENSO di atas menunjukkan Dbahwa pada bulan Oktober 2025 kondisi masih *La Niña* lemah dengan anomali suhu permukaan laut sekitar -0,9°C, kemudian melemah bertahap hingga mencapai kondisi netral pada Februari 2026 dan berlanjut ke arah positif (0,3°C) pada Maret 2026. Hal ini menandakan bahwa fase *La Niña* cenderung meningkatkan curah hujan di sebagian besar wilayah Indonesia, termasuk Ketapang, sehingga pada akhir 2025 diprakirakan curah hujan lebih tinggi dari normal dan berpotensi memicu banjir atau genangan di daerah rawan. Seiring melemahnya La Niña menuju netral pada awal 2026, pola hujan diperkirakan kembali mendekati normal, sehingga potensi hujan ekstrem mulai berkurang. Namun, karena transisi ini terjadi saat puncak musim hujan (Desember-Februari), dapat di katakan bahwa wilayah Ketapang tetap berpeluang mengalami hujan lebat terutama pada Desember 2025 dan Januari 2026.

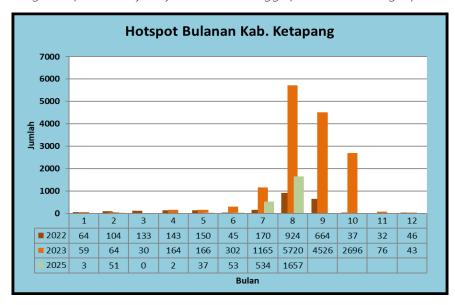
PRAKIRAAN IOD


Berdasarkan grafik dapat diketahui bahwa indeks IOD, yang merupakan indikator fenomena *Dipole Mode* di Samudra Hindia, berada pada fase negatif cukup kuat pada Oktober 2025 (-0,9°C) kemudian perlahan melemah hingga netral pada Februari 2026 dan sedikit positif pada Maret 2026. Fase *Dipole Mode* negatif menyebabkan perairan di sebelah timur Samudra Hindia lebih hangat, sehingga lebih banyak uap air yang terbawa ke wilayah Indonesia khususnya Indonesi bagian Barat seperti Ketapang. Akibatnya, curah hujan di sebagian wilayah Indoensia seperti Kabupaten Ketapang cenderung lebih tinggi dari biasanya pada akhir 2025, sehingga peluang hujan lebat dan banjir juga meningkat. Memasuki awal 2026, saat indeks IOD mendekati netral, hujan mulai kembali normal dan kondisi cuaca menjadi lebih stabil. Peralihan ini sejalan dengan berkurangnya potensi hujan ekstrem menjelang akhir musim hujan.


PRAKIRAAN SUHU PERMUKAAN LAUT

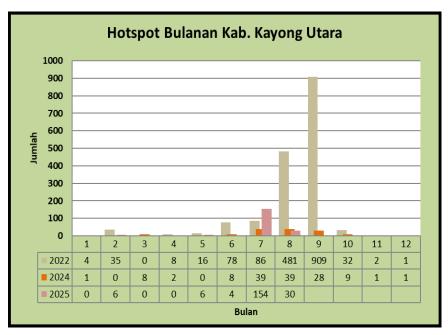
Prakiraan kondisi anomali suhu permukaan laut (SPL) pada bulan Oktober 2025 di perairan sekitar Ketapang dan Samudra Hindia bagian timur diperkirakan lebih hangat dari biasanya, dengan kenaikan suhu sekitar 0,25 hingga 2,0 °C. Sementara itu, suhu laut di Samudra Pasifik bagian tengah cenderung normal hingga agak dingin. Kondisi laut yang lebih hangat ini berpotensi menyebabkan penguapan air laut meningkat, sehingga lebih banyak uap air tersedia di atmosfer. Hal ini dapat membantu pembentukan awan dan meningkatkan peluang terjadinya hujan di wilayah Ketapang selama bulan Oktober 2025.

Andrai anomali SPL perairaan Ketapang dan Samudera Hindia bagian Timur selama bulan November 2025 di wilayah perairan Ketapang dan Samudra Hindia bagian timur diprakirakan tetap berada dalam kondisi lebih hangat dari biasanya, dengan anomali sekitar 0,25 hingga 2,0 °C. Sementara itu, suhu laut di Samudra Pasifik bagian tengah berada dalam kondisi normal. Laut yang lebih hangat ini akan meningkatkan penguapan air laut, sehingga udara di atasnya menjadi lebih lembap dan mendukung pembentukan awan hujan. Kondisi ini berpotensi menyebabkan terjadinya hujan di wilayah Ketapang selama bulan November 2025 cenderung tetap tinggi.



/eadaan anomali suhu permukaan laut (SPL) pada bulan Desember di perairan Samudra Hindia bagian timur dan sekitar Ketapang diprakirakan berada pada kondisi normal hingga sedikit lebih hangat, dengan kisaran antara -0,25 hingga 0,5 °C. Sementara itu, suhu laut di Samudra Pasifik bagian tengah cenderung lebih dingin dari biasanya. Laut yang sedikit lebih hangat di sekitar perairan Ketapang dapat meningkatkan jumlah uap air di atmosfer. Kondisi ini tetap berperan dalam mendukung pembentukan awan dan peluang hujan, terutama ketika angin monsun barat mulai aktif membawa massa udara lembap ke wilayah Kalimantan Barat termasuk Kabupaten Ketapang. Dengan kombinasi suhu laut yang mendekati normal dan dukungan angin musiman, hujan pada bulan Desember 2025 di Ketapang berpotensi terjadi secara merata dan menjadi bagian dari puncak musim hujan.

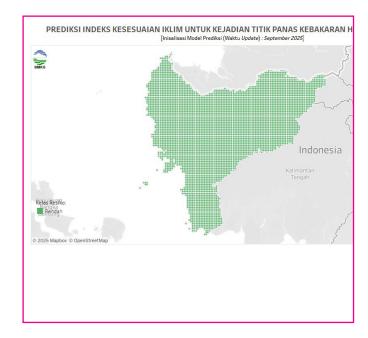
KESIMPULAN: Secara umum dapat dikatakan bahwa selama periode bulan Oktober - November 2025, kondisi anomali suhu permukaan laut di perairan Ketapang dan Samudra Hindia bagian timur diprakirakan lebih hangat dari biasanya, sehingga berpotensi meningkatkan penguapan dan memperbesar peluang terbentuknya awan hujan. Kondisi ini berpotensi menyebabkan curah hujan di wilayah Ketapang cenderung tinggi selama dua bulan tersebut. Selanjutnya memasuki bulan Desember 2025, kondisi anomali suhu permukaan laut kembali mendekati normal hingga sedikit hangat, namun ditambah dengan aktifnya angin monsun barat yang membawa udara lembap. Kondisi ini berpotensi menyebabkan hujan di wilayah Ketapang tetap terjadi secara merata dan menandai puncak musim hujan.


POTENSI KEMUDAHAN KEBAKARAN HUTAN DAN LAHAN

Wilayah Kabupaten Ketapang dan Kabupaten Kayong Utara merupakan bagian dari Provinsi Kalimantan Barat yang sangat berpotensi terjadinya karhutla sehingga pemantauan sangat perlu dilakukan.

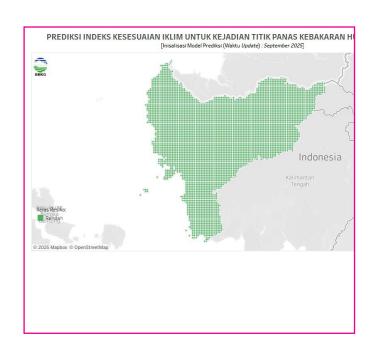
Demantauan titik panas di wilayah Kabupaten Ketapang bulan Agustus 2025 tercatat sebanyak 1657 titik. Hal tersebut akibat cuaca yang didominasi cerah berawan di Kabupaten Ketapang menyebabkan titik panas yang terdeteksi mengalami peningkatan yang sangat signifikan. Namun, intensitas hujan diprakirakan akan mengalami peningkatan pada bulan September hingga Oktober diprakirakan 2025 dan cuaca dominan berawan hingga hujan.

Berdasarkan prakiraan tesebut, potensi karhutla akan menurun akibat meningkatnya intensitas hujan pada bulan berikutnya. Akan tetapi, kegiatan pengamatan, pemantauan, dan mitigasi terkait titik panas yang dapat berpotensi sebagai indikasi terjadinya karhutla harus tetap dilakukan, hal ini perlu dilakukan sebagai antisipasi saat terjadi hari tanpa hujan dengan kondisi cuaca dominan cerah berawan pada wilayah Kabupaten Ketapang. Ketapang.

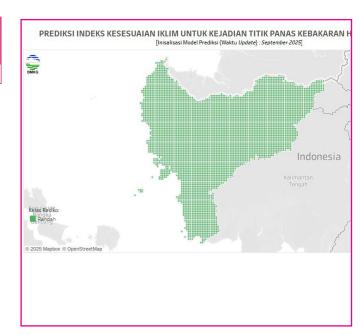

emantauan titik panas di wilayah Kabupaten Kayong Utara bulan Agustus 2025 tercatat sebanyak 30 titik. Hal tersebut akibat cuaca yang sudah memasuki musim hujan di Kabupaten Kayong Utara menyebabkan titik panas yang terdeteksi mengalami penurunan yang signifikan. Intensitas hujan diprakirakan akan mengalami peningkatan pada bulan September hingga Oktober 2025 dan cuaca diprakirakan dominan berawan hingga hujan.

Berdasarkan prakiraan tesebut, potensi karhutla akan menurun akibat meningkatnya intensitas hujan pada bulan berikutnya. Akan tetapi, kegiatan pengamatan, pemantauan, dan mitigasi terkait titik panas yang dapat berpotensi sebagai indikasi terjadinya karhutla harus tetap dilakukan, hal ini perlu dilakukan sebagai antisipasi saat terjadi hari tanpa hujan dengan kondisi cuaca dominan cerah berawan pada wilayah Kabupaten K Kayong Utara.

Prakiraan potensi adanya *hotspot* (titik panas) pada suatu wilayah dapat diperkirakan berdasarkan indeks klimatologi pada suatu wilayah. Prakiraan kemungkinan adanya *hotspot* dibagi menjadi tiga kategori yaitu *high* (tinggi), *moderate* (menengah), dan *low* (rendah). Prakiraan potensi adanya titik panas untuk tiga bulan kedepan dapat dijelaskan sebagai berikut.

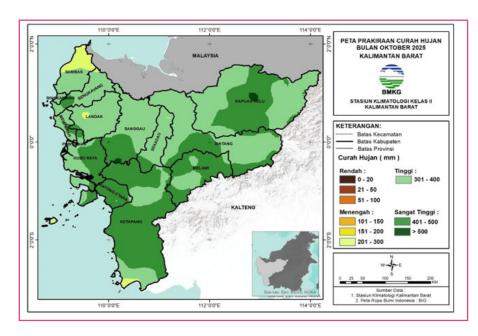

Dotensi *hotspot* (titik panas) pada bulan bulan Oktober 2025, untuk wilayah Kabupaten Ketapang dan Kayong Utara menunjukkan potensi dengan kategori rendah. Curah hujan diprakirakan akan meningkat di bulan Oktober 2025. Namun, pemantauan dan pencegahan titik panas dapat terus dilakukan dengan memperhatikan prakiraan cuaca. Berikut daerah yang memiliki potensi hotspot kategori menengah hingga tinggi di bulan Oktober 2025:

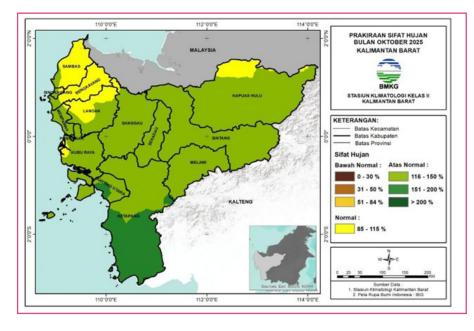
No	Kabupaten	Kecamatan	Resiko
		NIHIL	


Dotensi *hotspot* (titik panas) pada bulan November 2025, untuk wilayah Kabupaten Ketapang dan Kayong Utara menunjukkan potensi dengan kategori rendah. Curah hujan diprakirakan akan meningkat di bulan November 2025. Namun, pemantauan dan pencegahan titik panas dapat terus dilakukan dengan memperhatikan prakiraan cuaca. Berikut daerah yang memiliki potensi hotspot kategori menengah hingga tinggi di bulan November 2025:

No	Kabupaten	Kecamatan	Resiko

Potensi *hotspot* (titik panas) pada bulan Desember 2025, untuk wilayah Kabupaten Ketapang dan Kayong Utara menunjukkan potensi dengan kategori rendah. Curah hujan diprakirakan akan meningkat di bulan Desember 2025. Namun, pemantauan dan pencegahan titik panas dapat terus dilakukan dengan memperhatikan prakiraan cuaca. Berikut daerah yang memiliki potensi hotspot kategori menengah hingga tinggi di bulan November 2025:


	No	Kabupaten	Kecamatan	Resiko
1			NIHIL	

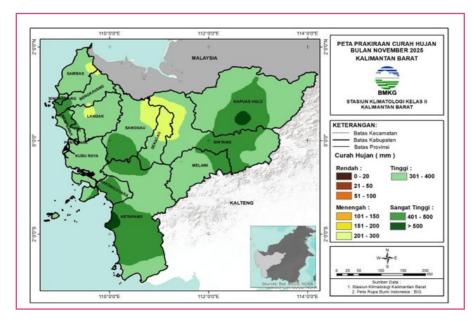

Prakiraan curah hujan dikategorikan menjadi empat, yaitu rendah (di bawah 100 mm), menengah (101 mm - 300 mm), tinggi (301 mm - 400 mm), dan sangat tinggi (401 mm - lebih dari 500 mm).

Prakiraan sifat hujan dikategorikan menjadi tiga, yaitu bawah normal, normal, dan atas normal.

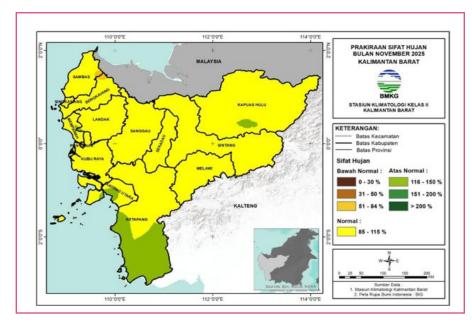
PRAKIRAAN CURAH HUJAN DAN SIFAT HUJAN BULAN OKTOBER 2025

Prakiraan curah hujan pada wilayah Kalimantan Barat bulan Oktober 2025 menunjukkan potensi curah hujan yang terjadi sebesar 200 – >500 mm dengan kategori menengah hingga sangat tinggi.

Prakiraan sifat hujan wilayah Kalimantan Barat bulan Oktober 2025 menunjukkan sifat hujan normal hingga atas normal (85–>200 %) terhadap nilai normalnya.


No	Nama Kecamatan	Curah Hujan (mm)	Kategori	Sifat Hujan
1	Air Upas	401 – 500	Sangat Tinggi	Atas Normal
2	Benua Kayong	401 – 500	Sangat Tinggi	Atas Normal
3	Delta Pawan	401 – 500	Sangat Tinggi	Atas Normal
4	Hulu Sungai	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
5	Jelai Hulu	401 – 500	Sangat Tinggi	Atas Normal
6	Kendawangan	201 – 500	Menengah - Sangat Tinggi	Atas Normal
7	Manismata	401 – 500	Sangat Tinggi	Atas Normal
8	Marau	401 – 500	Sangat Tinggi	Atas Normal
9	Matan Hilir Selatan	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
10	Matan Hilir Utara	401 – 500	Sangat Tinggi	Atas Normal
11	Muara Pawan	401 – 500	Sangat Tinggi	Atas Normal
12	Nanga Tayap	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
13	Pemahan	401 – 500	Sangat Tinggi	Atas Normal
14	Sandai	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
15	Simpang Dua	401 – 500	Sangat Tinggi	Atas Normal
16	Simpang Hulu	401 – 500	Sangat Tinggi	Atas Normal
17	Singkup	401 – 500	Sangat Tinggi	Atas Normal
18	Sungai Laur	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
19	Sungai Melayu Rayak	401 – 500	Sangat Tinggi	Atas Normal
20	Tumbang Titi	401 – 500	Sangat Tinggi	Atas Normal

Curah hujan bulan Oktober 2025 di wilayah Kabupaten Ketapang diprakirakan berkisar antara 201 – 500 mm dengan kategori menengah hingga sangat tinggi dan bersifat atas normal.

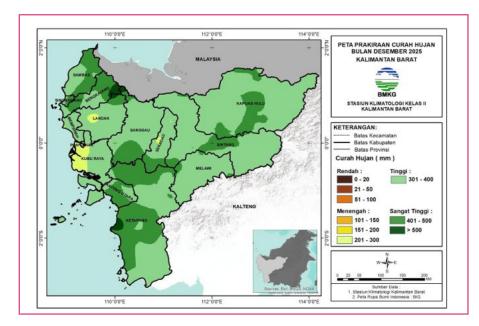

No	Nama Kecamatan	Curah Hujan (mm)	Kategori	Sifat Hujan
1	Pulau Karimata	201 – 400	Menengah - Tinggi	Atas Normal
2	Pulau Maya	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
3	Seponti	401 – 500	Sangat Tinggi	Atas Normal
4	Simpang Hilir	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
5	Sukadana	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
6	Teluk Batang	401 – 500	Sangat Tinggi	Atas Normal

Curah hujan bulan Oktober 2025 di wilayah Kabupaten Kayong Utara diprakirakan berkisar antara 201– 500 mm dengan kategori menengah hingga sangat tinggi dan bersifat atas normal.

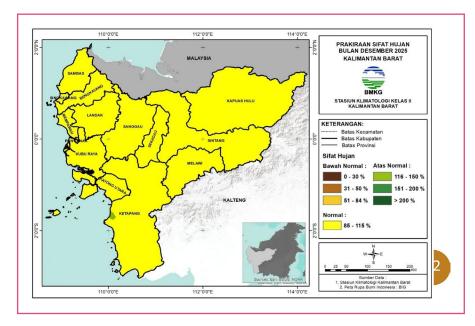
PRAKIRAAN CURAH HUJAN DAN SIFAT HUJAN BULAN NOVEMBER 2025

Prakiraan curah hujan pada wilayah Kalimantan Barat bulan November 2025 menunjukkan potensi curah hujan terjadi sebesar 201 – >500 mm dengan kategori menengah hingga sangat tinggi.

rakiraan sifat hujan wilayah Kalimantan Barat bulan November 2025 menunjukkan sifat hujan bawah normal hingga atas normal (50 – 150%) terhadap nilai normalnya.


No	Nama Kecamatan	Curah Hujan (mm)	Kategori	Sifat Hujan
1	Air Upas	401 - 500	Sangat Tinggi	Atas Normal
2	Benua Kayong	401 - 500	Sangat Tinggi	Normal - Atas Normal
3	Delta Pawan	401 - > 500	Sangat Tinggi	Atas Normal
4	Hulu Sungai	301 - 500	Tinggi - Sangat Tinggi	Normal
5	Jelai Hulu	301 - 500	Tinggi - Sangat Tinggi	Normal - Atas Normal
6	Kendawangan	301 - 500	Tinggi - Sangat Tinggi	Atas Normal
7	Manis Mata	301 - 500	Tinggi - Sangat Tinggi	Atas Normal
8	Marau	401 - 500	Sangat Tinggi	Normal - Atas Normal
9	Matan Hilir Selatan	401 - >500	Sangat Tinggi	Normal - Atas Normal
10	Matan Hilir Utara	401 - >500	Sangat Tinggi	Normal - Atas Normal
11	Muara Pawan	401 - >500	Sangat Tinggi	Normal - Atas Normal
12	Nanga Tayap	301 - 500	Tinggi - Sangat Tinggi	Normal
13	Pemahan	401 - 500	Sangat Tinggi	Normal
14	Sandai	301 - 400	Tinggi	Normal
15	Simpang Dua	401 - 500	Sangat Tinggi	Normal
16	Simpang Hulu	301 - 500	Tinggi - Sangat Tinggi	Normal
17	Singkup	401 - 500	Sangat Tinggi	Atas Normal
18	Sungai Laur	301 - 500	Tinggi - Sangat Tinggi	Normal
19	Sungai Melayu Rayak	401 - 500	Sangat Tinggi	Normal - Atas Normal
20	Tumbang Titi	401 - 500	Sangat Tinggi	Normal - Atas Normal

Curah hujan bulan November 2025 di wilayah Kabupaten Ketapang diprakirakan berkisar antara 301 – >500 mm dengan kategori tinggi hingga sangat tinggi dan bersifat normal hingga atas normal.


No	Nama Kecamatan	Curah Hujan (mm)	Kategori	Sifat Hujan
1	Pulau Karimata	301 - 400	Tinggi	Normal
2	Pulau Maya	301 - 500	Tinggi - Sangat Tinggi	Normal - Atas Normal
3	Seponti	301 - 500	Tinggi - Sangat Tinggi	Normal
4	Simpang Hilir	301 - 500	Tinggi - Sangat Tinggi	Normal - Atas Normal
5	Sukadana	401 - 500	Sangat Tinggi	Normal - Atas Normal
6	Teluk Batang	301 - 500	Tinggi - Sangat Tinggi	Normal - Atas Normal

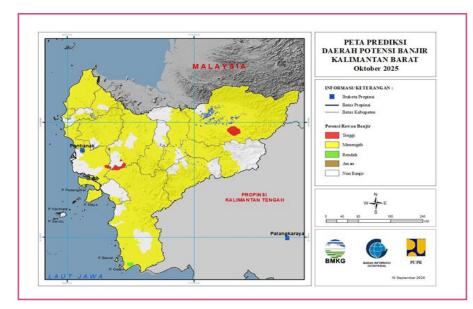
Curah hujan bulan November 2025 di wilayah Kabupaten Kayong Utara diprakirakan berkisar antara 301–500 mm dengan kategori tinggi hingga sangat tinggi dan bersifat normal hingga atas normal.

PRAKIRAAN CURAH HUJAN DAN SIFAT HUJAN BULAN DESEMBER 2025

Prakiraan curah hujan pada wilayah Kalimantan Barat bulan Desember 2025 menunjukkan potensi curah hujan terjadi sebesar 201 – >500 mm dengan kategori menengah hingga sangat tinggi.

Prakiraan sifat hujan wilayah Kalimantan Barat bulan Desember 2025 menunjukkan sifat hujan normal hingga atas normal 85 – 150 mm terhadap nilai normalnya.

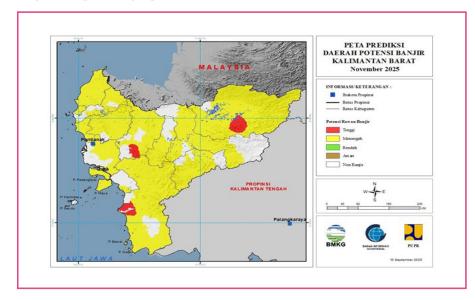
No	Nama Kecamatan	Curah Hujan (mm)	Kategori	Sifat Hujan
1	Air Upas	301 – 400	Tinggi	Normal
2	Benua Kayong	401 – 500	Sangat Tinggi	Normal
3	Delta Pawan	401 - > 500	Sangat Tinggi	Normal
4	Hulu Sungai	301 – 500	Tinggi - Sangat Tinggi	Normal
5	Jelai Hulu	301 – 500	Tinggi - Sangat Tinggi	Normal
6	Kendawangan	301 – 500	Tinggi - Sangat Tinggi	Atas Normal
7	Manis Mata	201 - 300	Menengah - Sangat Tinggi	Normal
8	Marau	301 – 500	Tinggi - Sangat Tinggi	Normal
9	Matan Hilir Selatan	401 - >500	Sangat Tinggi	Normal
10	Matan Hilir Utara	401 - >500	Sangat Tinggi	Atas Normal
11	Muara Pawan	401 - >500	Sangat Tinggi	Atas Normal
12	Nanga Tayap	301 – 500	Tinggi - Sangat Tinggi	Normal
13	Pemahan	301 – 500	Tinggi - Sangat Tinggi	Normal
14	Sandai	301 – 500	Tinggi - Sangat Tinggi	Normal
15	Simpang Dua	301 – 500	Tinggi - Sangat Tinggi	Normal
16	Simpang Hulu	301 – 500	Tinggi - Sangat Tinggi	Normal
17	Singkup	301 – 400	Tinggi	Normal
18	Sungai Laur	301 – 500	Tinggi - Sangat Tinggi	Normal
19	Sungai Melayu Rayak	301 – 500	Tinggi - Sangat Tinggi	Normal
20	Tumbang Titi	301 – 500	Tinggi - Sangat Tinggi	Normal


Bulan Desember 2025 curah hujan di wilayah Kabupaten Ketapang diprakirakan berkisar antara 201 – >500 mm dengan kategori menengah hingga sangat tinggi dan bersifat normal hingga atas normal.

No	Nama Kecamatan	Curah Hujan (mm)	Kategori	Sifat Hujan
1	Pulau Karimata	301 – 400	Tinggi	Normal
2	Pulau Maya	301 – 400	Tinggi	Normal
3	Seponti	301 – 500	Tinggi - Sangat Tinggi	Normal
4	Simpang Hilir	301 – 500	Tinggi - Sangat Tinggi	Normal
5	Sukadana	401 – 500	Sangat Tinggi	Normal
6	Teluk Batang	301 – 500	Tinggi - Sangat Tinggi	Normal

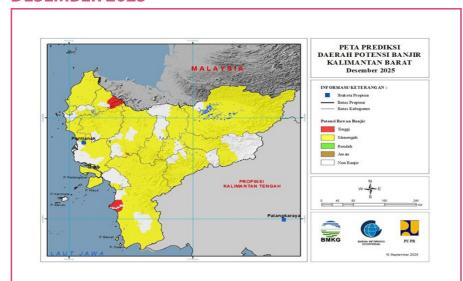
Curah hujan bulan Desember 2025 di wilayah Kabupaten Kayong Utara diprakirakan berkisar antara 301–500 mm dengan kategori Tinggi hingga Sangat Tinggi dan bersifat normal.

POTENSI BANJIR


OKTOBER 2025

Potensi banjir dengan kategori rendah hingga menengah untuk wilayah Kabupaten Ketapang dan Kayong Utara bulan Oktober 2025 ini berkaitan dengan prakiraan curah hujan dengan kategori menengah hingga sangat tinggi pada bulan Oktober 2025.

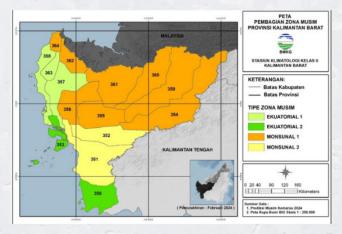
Tingkat Potensi Banjir Oktober 2025		
Tinggi	Menengah	Rendah
Kayong Utara : -	Kayong Utara : Pulau Maya, Sukadana	Kayong Utara : -
Ketapang : Simpang Hulu	Ketapang: Delta Pawan, Hulu Sungai, Jelai Hulu, Kendawangan, Manis Mata, Matan Hilir Selatan, Muara Pawan, Nanga Tayap, Pemahan, Sandai, Simpang Dua, Simpang Hulu, Sungai Laur, Sungai Melayu Rayak, dan Tumbang Titi	Ketapang : Delta Pawan, Kendawangan, dan Matan Hilir Selatan


NOVEMBER 2025

Potensi banjir kategori rendah hingga menengah untuk wilayah Kabupaten Ketapang dan Kayong Utara bulan November 2025, hal ini berkaitan dengan prakiraan curah hujan pada bulan November 2025 dengan kategori tinggi hingga sangat tinggi.

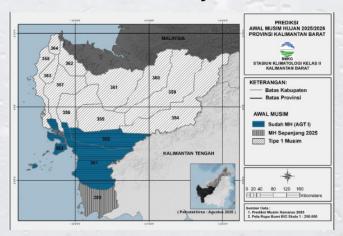
Tingkat Potensi Banjir November 2025			
Tinggi	Menengah	Rendah	
Kayong Utara:-	Kayong Utara : Pulau Maya, Sukadana	Kayong Utara : -	
Ketapang : Delta Pawan, Matan Hilir Selatan, Muara Pawan, Simpang Hulu, dan Sungai Melayu Rayak	Ketapang: Delta Pawan, Hulu Sungai, Jelai Hulu, Kendawangan, Manis Mata, Matan Hilir Selatan, Muara Pawan, Nanga Tayap, Pemahan, Sandai, Simpang Dua, Simpang Hulu, Sungai Laur, Sungai Melayu Rayak, dan Tumbang Titi.	Ketapang : Kendawangan	

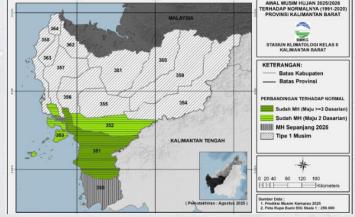
DESEMBER 2025


Potensi banjir kategori menengah hingga tinggi untuk wilayah Kabupaten Ketapang dan Kabupaten Kayong Utara bulan Desember 2025, ini berkaitan dengan prakiraan curah hujan pada bulan Desember 2025 dengan kategori menengah hingga sangat tinggi.

Secara umum tingkat kewaspadaan untuk potensi banjir periode Oktober 2025 hingga Desember 2025 dalam kategori rendah hingga tinggi.

Tingkat Potensi Banjir Desember 2025			
Tinggi	Menengah	Rendah	
Kayong Utara:	Kayong Utara : Pulau Maya, Sukadana	Kayong Utara : -	
Ketapang : Delta Pawan, Matan Hilir Selatan, Muara Pawan, dan Sungai Melayu Rayak	Ketapang: Delta Pawan, Hulu Sungai, Jelai Hulu, Kendawangan, Manis Mata, Matan Hilir Selatan, Muara Pawan, Nanga Tayap, Pemahan, Sandai, Simpang Dua, Simpang Hulu, Sungai Laur, Sungai Melayu Rayak, dan Tumbang Titi	Ketapang:-	

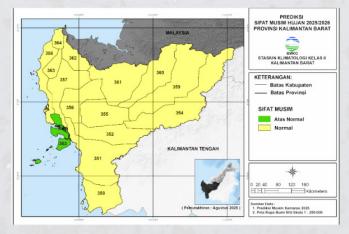

PREDIKSI MUSIM HUJAN DI KABUPATEN KETAPANG DAN KAYONG UTARA TAHUN 2025/2026


1. PEMBAGIAN ZONA MUSIM DI KABUPATEN KETAPANG DAN KABUPATEN KAYONG UTARA

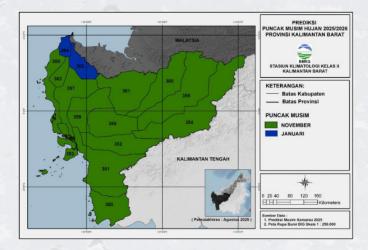
No. ZOM	Wilayah
350	Ketapang bagian Selatan.
351	Kayong Utara bagian Barat dan Ketapang
	bagian tengah.
352	Ketapang bagian Utara dan Kayong Utara
	bagian Timur
353	Kayong Utara bagian barat
355	Sebagian kecil Ketapang bagian Utara
356	Sebagian kecil Ketapang bagian utara

2. PRAKIRAAN MUSIM HUJAN 2025/2026

PREDIKSI AWAL MUSIM HUJAN 2025/2026

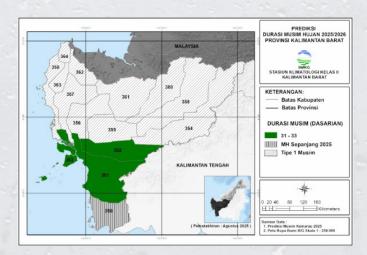

Berdasarkan pertimbangan kondisi dinamika atmosfer dan data curah hujan, awal musim hujan di wilayah Ketapang dan Kayong Utara terjadi pada Agustus Dasarian I pada ZOM 351, 352 dan 353.

PERBANDINGAN PREDIKSI AWAL MUSIM HUJAN 2025/2026 TERHADAP NORMALNYA

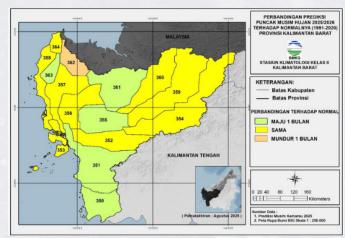

Perbandingan awal musim hujan 2025/2026 di wilayah Ketapang dan Kayong Utara diprediksi maju lebih dari sama dengan 3 dasarian dibandingkan dengan periode normalnya pada ZOM 351, maju 2 dasarian pada ZOM 352 dan 353. Sedangkan pada ZOM 350, musim hujan diprediksi terjadi sepanjang tahun 2025.

PREDIKSI SIFAT MUSIM HUJAN 2025/2026

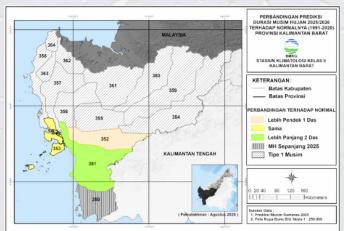
Prediksi sifat hujan pada musim hujan 2025/2026 di Kabupaten Ketapang dan Kayong Utara adalah Normal hingga Atas Normal. Normal pada lima ZOM (350, 351, 352, 355 dan 356) meliputi sebagian wilayah Kabupaten Kayong Utara dan Ketapang. Sedangkan atas normal meliputi wilayah ZOM 353 yaitu wilayah Kayong Utara bagian barat.



ARTIKEL BMKG


PREDIKSI PUNCAK MUSIM HUJAN 2025/2026

Puncak musim hujan merupakan periode dimana jumlah akumulasi tertinggi curah hujan selama tiga dasarian berturut-turut. Puncak musim hujan 2025/2026 di Kabupaten Ketapang dan Kayong Utara diprediksi terjadi pada Bulan November 2025.


PREDIKSI DURASI MUSIM HUJAN 2025/2026

Prediksi durasi musim hujan 2025/2026 di wilayah Ketapang dan Kayong Utara sepanjang 31 - 33 dasarian pada ZOM 351, 352, dan 353 yang meliputi Ketapang bagian tengah, Kayong Utara bagian timur dan barat. Sedangkan untuk ZOM 350 yang meliputi Ketapang bagian selatan diprakirakan terjadi musim hujan sepanjang tahun 2025.

PERBANDINGAN PREDIKSI PUNCAK MUSIM HUJAN 2025/2026 DENGAN NORMALNYA

Perbandingan puncak musim hujan 2025/2026 di wilayah Ketapang dan Kayong Utara terhadap normalnya diprediksi maju 1 bulan pada tiga ZOM (350, 351, dan 355) dan sama pada tiga ZOM (352, 353, dan 356).

PERBANDINGAN PREDIKSI DURASI MUSIM HUJAN 2025/2026 DENGAN NORMALNYA

Perbandingan durasi musim hujan 2025/52026 di Kabupaten Ketapang dan Kayong Utara terhadap normalnya diprediksi memiliki sama pada ZOM 353, lebih pendek 1 dasarian pada ZOM 352, dan lebih panjang 2 dasarian pada ZOM 351.

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI RAHADI OESMAN KETAPANG

Jl. Patimura No. 11 Ketapang Kalimantan Barat Telp/Fax : (0534) 32706

